Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Di- μ-chlorido-bis[dichloridobis(methyl-amido- κN)bis(methylamine- κN)titanium(IV)]

Tegan Thomas, David Pugh, Ivan P. Parkin and Claire J. Carmalt*

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
Correspondence e-mail: c.j.carmalt@ucl.ac.uk
Received 8 June 2011
Accepted 15 June 2011
Online 23 June 2011

The title compound, $\left[\mathrm{Ti}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, is a binuclear octahedral complex lying about an inversion centre. There are four different chloride environments, two terminal $[\mathrm{Ti}-\mathrm{Cl}=$ 2.2847 (5) and 2.3371 (5) \AA] and two bridging [$\mathrm{Ti}-\mathrm{Cl}=$ 2.4414 (5) and 2.6759 (5) \AA], with the $\mathrm{Ti}-\mathrm{Cl}$ distances being strongly influenced by both the ligand trans to the chloride and whether or not the chloride anion is bridging between the two $\mathrm{Ti}^{\mathrm{IV}}$ centres. The compound forms a two-dimensional network in the solid state, with weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions giving rise to a planar network in the $(10 \overline{2})$ plane.

Comment

Chemical vapour deposition (CVD) is a well used technique for depositing thin films of materials (Jones \& Hitchman, 2009). Industrially, films of transition metal pnictide materials are deposited using volatile metal and pnictogen precursors, but these precursors are often toxic, flammable and generally difficult to handle. 'Single-source' precursors are compounds which contain a direct $M-\mathrm{Pn}$ bond $(\mathrm{Pn}=$ pnictogen $)$ and they are usually much less toxic and much easier to handle (Cowley \& Jones, 1994; Carmalt \& Basharat, 2007).

As part of recent work into the synthesis of molecular precursors for the deposition of transition metal pnictide thin films (Potts et al., 2009; Thomas, Blackman et al., 2010; Thomas et al., 2011), we recently reported an unusual ligand-exchange reaction between TiCl_{4} and $\mathrm{As}\left(\mathrm{NMe}_{2}\right)_{3}$ (Thomas, Pugh et al., 2010). The reaction of one equivalent of $\mathrm{As}\left(\mathrm{NMe}_{2}\right)_{3}$ with TiCl_{4} did not afford the $1: 1$ adduct $\left[\mathrm{TiCl}_{4}\left\{\mathrm{As}\left(\mathrm{NMe}_{2}\right)_{3}\right\}\right]$. Instead, the compound $\left[\mathrm{TiCl}_{3}\left(\mathrm{NMe}_{2}\right)\left(\mu-\mathrm{NMe}_{2}\right)_{2} \mathrm{AsCl}\right]$, (I), was isolated as dark-green crystals. Structural characterization confirmed that an exchange of chloride and dimethylamide ligands had taken place.

Despite the fact that (I) was largely unsuitable as a singlesource precursor to thin films of TiAs (owing to the lack of a direct $\mathrm{Ti}-$ As bond), further investigations into this unusual
exchange were carried out. In an attempt to determine whether the exchange would still occur if the ligands on the metals were reversed, one equivalent of $\left[\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}\right]$ was reacted with AsCl_{3}. The title compound, (II), also a darkgreen solid, was isolated from the reaction.

(I)

(II)

Compound (II) is a binuclear complex lying about an inversion centre, with each 14 -electron $\mathrm{Ti}^{\mathrm{IV}}$ centre distorted from ideal octahedral geometry. The bridging chloride ligand datively bonds trans to the dimethylamide group, with the four ligands cis to the dimethylamide group showing a slight repulsion from the strongly electronegative group (Fig. 1). The $\mathrm{Ti}_{2} \mathrm{Cl}_{2}$ ring at the heart of the molecule is planar, with atom N 1 departing from this plane by 0.102 (2) \AA.

The $\mathrm{Ti}-\mathrm{N}$ bond lengths in (II) give a strong indication of the presence of two different types of N -containing ligand within the complex (Table 1). The large difference between the $\mathrm{Ti}-\mathrm{N} 1$ and $\mathrm{Ti}-\mathrm{N} 2$ bond lengths is indicative of the presence of anionic amide and neutral amine ligands. In addition, the geometry at N2 and the presence of a peak in the difference Fourier map in the expected position for an amine

Figure 1
A view of (II), showing the atom-numbering scheme and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $-x+1,-y+1,-z+1$.]

Figure 2
A view of (II), showing the two-dimensional arrangement parallel to the (102) plane. [Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y+1, z$; (iii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x+1,-y+2,-z+1$.]

H atom lead to the assignment of N 2 to a neutral dimethylamine ligand.

The $\mathrm{Ti}-\mathrm{Cl}$ bond distances are heavily influenced by the trans effect, with the longest found for the chloride ligand trans to the dimethylamide group (Table 1). However, the fact that this is the 'bridging' $\mathrm{Ti}-\mathrm{Cl} 2{ }^{\mathrm{i}}$ bond [symmetry code: (i) $-x+1,-y+1,-z+1]$ also has a strong influence on the bond length. This is confirmed by looking at the $\mathrm{Ti}-\mathrm{Cl}$ bonds which are trans to each other: the $\mathrm{Ti}-\mathrm{Cl} 2$ bond is longer than the $\mathrm{Ti}-\mathrm{Cl} 3$ bond. This effect can only be a result of atom Cl 2 being involved in bridging between the two Ti centres, because the immediate environment around the chloride ligands is otherwise identical. The other $\mathrm{Ti}-\mathrm{Cl}$ distance demonstrates the difference in trans effect between chloride and amine ligands. The $\mathrm{Ti}-\mathrm{Cl} 3$ distance is the shortest of the four $\mathrm{Ti}-\mathrm{Cl}$ distances and is a result of atom Cl 3 being trans to a bridging chloride ligand. Even though Cl1 is trans to a neutral amine ligand instead of an anionic chloride ligand, the stronger trans effect of the amine has the effect of lengthening the $\mathrm{Ti}-\mathrm{Cl} 1$ bond.

These effects were also noted in other structurally characterized examples of $\left[\mathrm{TiCl}_{3} L_{\mathrm{a}} L_{\mathrm{n}}\right]_{2}$ species (L_{a} is an anionic amide donor and L_{n} is a neutral amine donor). Two types of these complexes have been reported in the Cambridge Structural Database (CSD, August 2010 update; Allen, 2002), both of which involve bidentate ligands. Two examples exist of 2-amidopyridine adducts, viz. $\left[\mathrm{Me}_{3} \mathrm{SiN}(2-\mathrm{py}) \mathrm{TiCl}_{3}\right]_{2}$ reported by Jones et al. (2003) and $\left[\mathrm{PhN}(2-\mathrm{py}) \mathrm{TiCl}_{3}\right]_{2}$ reported by Talja et al. (2005). Also, two aminosilylamide adducts of TiCl_{3} have been reported, by Buheitel et al. (1996) and Rannabauer et al. (2002), where the donor atoms are linked through an Si_{2} group ($X=\mathrm{Cl}$ or Me). In each case, the geometry at the metal centre is very similar to that found in (II), with only the nature of the N -containing ligands differing. For example, in each
complex, the amide donor is trans to a bridging chloride ligand, resulting in a lengthening of that $\mathrm{Ti}-\mathrm{Cl}$ bond.

Also present in (II) is an intramolecular hydrogen-bonding interaction between the $\mathrm{N} 2-\mathrm{H} 2$ group of the amine ligand and atom $\mathrm{Cl}^{1}{ }^{\mathrm{i}}$ (Fig. 1 and Table 2). Other weaker intermolecular methyl $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are also present in the crystal structure (see Table 2) and give rise to a twodimensional network parallel to the $(10 \overline{2})$ plane, as shown in Fig. 2.

The lack of arsenic in (II) is notable compared with (I), where it was retained. This does rule out (II) as a potential single-source precursor to thin films of TiAs. However, it may prove to be a viable precursor to thin films of TiN, owing to the presence of two N -donor ligands attached to Ti.

Experimental

A solution of $\mathrm{AsCl}_{3}(0.2 \mathrm{ml}, 2.37 \mathrm{mmol})$ in diethyl ether (20 ml) was added dropwise to a solution of $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}(0.6 \mathrm{ml}, 2.53 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{ml})$. The reaction was stirred for 48 h and then the solvent was removed under vacuum, affording a dark-green solid (yield 93%). Crystallization occurred by layering a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of (II) with hexane. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right.$, $298 \mathrm{~K}): \delta 2.5(s), 2.2(s)$. Analysis calculated for $\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{Ti}: \mathrm{C}$ 19.74, H 5.38, N 11.51%; found: C 19.57, H 5.51, N 11.62%.

Crystal data

$\left[\mathrm{Ti}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=486.83$
Monoclinic, $P 2_{1} / c$
$a=10.7088$ (4) \AA
$b=6.7143$ (3) \AA
$c=15.7006(5) \AA$
$\beta=116.515$ (2) ${ }^{\circ}$

Data collection

Bruker-Nonius APEXII diffractometer with a CCD camera on κ-goniostat Absorption correction: multi-scan (SADABS; Sheldrick, 2007)
$T_{\text {min }}=0.786, T_{\text {max }}=0.884$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.062$
$S=1.12$
2317 reflections
,

$$
V=1010.16(7) \AA^{3}
$$

$$
Z=2
$$

Mo $K \alpha$ radiation
$\mu=1.58 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
$0.16 \times 0.10 \times 0.08 \mathrm{~mm}$

9954 measured reflections

2317 independent reflections

2092 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$

95 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.32 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$

All H atoms were clearly visible in difference maps and were refined using a riding model. The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ti1-N1	$1.8576(16)$	Ti1-Cl1	$2.3371(5)$
Ti1-N2	$2.2358(16)$	Ti1-Cl2	$2.4414(5)$
Ti1-Cl3	$2.2847(5)$	Ti1-Cl2	$2.6759(5)$
N2-Ti1-Cl1	$164.09(4)$	$\mathrm{N} 1-\mathrm{Ti} 1-\mathrm{Cl}^{\mathrm{i}}$	$174.37(5)$
Cl3-Ti1-Cl2	$165.80(2)$		
Symmetry code: $(\mathrm{i})-x+1,-y+1,-z+1$.			

Table 2
Hydrogen-bond and short-contact geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.93	2.40	$3.3282(16)$	175
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 3^{\mathrm{ii}}$	0.98	2.92	$3.822(2)$	153
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\text {iii }}$	0.98	2.83	$3.661(2)$	143
Symmetry codes: (i) $-x+1,-y+1,-z+1 ;$ (ii) $x, y+1, z ;$ (iii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$				

were allowed to rotate freely about the adjacent $\mathrm{C}-\mathrm{N}$ bonds. Atom H 2 bonded to N 2 was placed in a geometrically idealized position and constrained to ride, with $\mathrm{N}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

The authors thank the EPSRC for funding (TT and DP). We also thank SAFC Hitech for supplying $\left[\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}\right]$ and Dr Peter Horton at the EPSRC National Crystallography Service for the data collection for (II).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG3220). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Buheitel, R., Milius, W. \& Schnick, W. (1996). Z. Naturforsch. Teil B, 51, 11411144.

Carmalt, C. J. \& Basharat, S. (2007). Comprehensive Organometallic Chemistry III, Vol. 12, pp. 1-34. Amsterdam: Elsevier.
Cowley, A. H. \& Jones, R. A. (1994). Polyhedron, 13, 1149-1157.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Jones, A. C. \& Hitchman, M. L. (2009). Chemical Vapour Deposition: Precursors, Processes and Applications, 1st ed. Cambridge: RSC Publishing.
Jones, C., Junk, P. C., Leary, S. G. \& Smithies, N. A. (2003). Inorg. Chem. Соттии. 6, 1126-1128.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Potts, S. E., Carmalt, C. J., Blackman, C. S., Abou-Chahine, F. A., Pugh, D. \& Davies, H. O. (2009). Organometallics, 28, 1838-1844.
Rannabauer, S., Bettenhausen, R. \& Schnick, W. (2002). Z. Anorg. Allg. Chem. 628, 373-376.
Sheldrick, G. M. (2007). SADABS. Version 2007/2. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Talja, M., Klinga, M., Polamo, M., Aitola, E. \& Leskelä, M. (2005). Inorg. Chim. Acta, 358, 1061-1067.
Thomas, T., Blackman, C. S., Parkin, I. P. \& Carmalt, C. J. (2010). Eur. J. Inorg. Chem. pp. 5629-5634.
Thomas, T., Pugh, D., Parkin, I. P. \& Carmalt, C. J. (2010). Dalton Trans. 39, 5325-5331.
Thomas, T., Pugh, D., Parkin, I. P. \& Carmalt, C. J. (2011). Acta Cryst. C67, m96-m99.

